Part Number Hot Search : 
5KP51A SI441 UF200 15BUIB 1045CT 04020 90FEB M5S28AJ
Product Description
Full Text Search
 

To Download AD831APZ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. no license is granted by implication or oth - erwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective companies. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781/329-4700 www.analog.com fax: 781/326-8703 ? 2003 analog devices, inc. all rights reserved. ad831 low distortion mixer functional block diagram ?? ?? ? ?? ??? ?? ??? ?? ?? ? ?? ? ?? ?? ?? ? ?? ? ?? ??? ???? ?? ??? ??? ??? ????? ?? ? ?? ? ?? ? ?? ?? ?? ? ? ? ? ? ?? ?? ?? ?? ?? ? ? ? ?? ?? features doubly balanced mixer low distortion +24 dbm third order intercept (ip3) +10 dbm 1 db compression point low lo drive required: C10 dbm bandwidth 500 mhz rf and lo input bandwidths 250 mhz differential current if output dc to >200 mhz single-ended voltage if output single- or dual-supply operation dc coupled using dual supplies all ports may be dc coupled no lower frequency limitoperation to dc user-programmable power consumption applications high performance rf/if mixer direct to baseband conversion image-reject mixers i/q modulators and demodulators product description the ad831 is a low distortion, wide dynamic range, monolithic mixer for use in such applications as rf to if downconversion in hf and vhf receivers, the second mixer in dmr base sta - tions, direct-to-baseband conversion, quadrature modulation and demodulation, and doppler shift detection in ultrasound imaging applications. the mixer includes an lo driver and a low noise output amplifer and provides both user-programmable power consumption and third order intercept point. the ad831 provides a +24 dbm third order intercept point for C10 dbm lo power, thus improving system performance and reducing system cost compared to passive mixers, by eliminating the need for a high power lo driver and its attendant shielding and isolation problems. the rf, if, and lo ports may be dc or ac coupled when the mixer is operating from 5 v supplies or ac coupled when oper - ating from a single-supply of 9 v minimum. the mixer operates with rf and lo inputs as high as 500 mhz. the mixers if output is available as either a differential current output or a single-ended voltage output. the differential output is from a pair of open collectors and may be ac coupled via a trans - former or capacitor to provide a 250 mhz output bandwidth. in downconversion applications, a single capacitor connected across these outputs implements a low-pass flter to reduce harmonics directly at the mixer core, simplifying output fltering. when building a quadrature-amplitude modulator or image reject mixer, the differential current outputs of two ad831s may be summed by connecting them together. an integral low noise amplifer provides a single-ended voltage output and can drive such low impedance loads as flters, 50 amplifer inputs, and a/d converters. its small signal bandwidth exceeds 200 mhz. a single resistor connected between pins out and fb sets its gain. the amplifers low dc offset allows its use in such direct-coupled applications as direct-to-baseband conversion and quadrature-amplitude demodulation. the mixers ssb noise fgure is 10.3 db at 70 mhz using its output amplifer and optimum source impedance. unlike passive mixers, the ad831 has no insertion loss and does not require an external diplexer or passive termination. a programmable-bias feature allows the user to reduce power consumption, with a reduction in the 1 db compression point and third-order intercept. this permits a tradeoff between dynamic range and power consumption. for example, the ad831 may be used as a second mixer in cellular and two-way radio base stations at reduced power while still providing a substantial performance improvement over passive solutions. product highlights 1. C10 dbm lo drive for a +24 dbm output referred third order intercept point 2. single-ended voltage output 3. high port-to-port isolation 4. no insertion loss 5. single- or dual-supply operation 6. 10.3 db noise figure rev. c
C2 C ad831Cspecifications ad831 C3 C parameter conditions min typ max unit rf input bandwidth C10 dbm signal level, ip3 +20 dbm 400 mhz 10.7 mhz if and high side injection see figure 1 1 db compression point 10 dbm common-mode range 1 v bias current dc coupled 160 500 a dc input resistance differential or common mode 1.3 k capacitance 2 pf if output bandwidth single-ended voltage output, C3 db level = 0 dbm, r l = 100 200 mhz conversion gain terminals out and vfb connected 0 db output offset voltage dc measurement; lo input switched 1 C40 +15 +40 mv slew rate 300 v/s output voltage swing r l = 100 , unity gain 1.4 v short circuit current 75 ma lo input bandwidth C10 dbm input signal level 400 mhz 10.7 mhz if and high side injection maximum input level C1 +1 v common-mode range C1 +1 v minimum switching level differential input signal 200 mv p-p bias current dc coupled 17 50 a resistance differential or common mode 500 capacitance 2 pf isolation between ports lo-to-rf lo = 100 mhz, r s = 50 , 10.7 mhz if 70 db lo-to-if lo = 100 mhz, r s = 50 , 10.7 mhz if 30 db rf-to-if rf = 100 mhz, r s = 50 , 10.7 mhz if 45 db distortion and noise lo = C10 dbm, f = 100 mhz, if = 10.7 mhz third order intercept output referred, 100 mv lo input 24 dbm second order intercept output referred, 100 mv lo input 62 dbm 1 db compression point r l = 100 , r bias = 10 dbm noise figure, ssb matched input, rf = 70 mhz, if = 10.7 mhz 10.3 db matched input, rf = 150 mhz, if = 10.7 mhz 14 db power supplies recommended supply range dual supply 4.5 5.5 v single supply 9 11 v quiescent current * for best third order intercept point performance 100 125 ma bias pin open circuited * quiescent current is programmable. specifcations subject to change without notice. (t a = +25 c and v s = 5 v unless otherwise noted; all values in dbm assume 50 load.) rev. c rev. c
C2 C ad831Cspecifications ad831 C3 C pin description pin no. mnemonic description 1 vp positive supply input 2 ifn mixer current output 3 an amplifer negative input 4 gnd ground 5 vn negative supply input 6 rfp rf input 7 rfn rf input 8 vn negative supply input 9 vp positive supply input 10 lon local oscillator input 11 lop local oscillator input 12 vp positive supply input 13 gnd ground 14 bias bias input 15 vn negative supply input 16 out amplifer output 17 vfb amplifer feedback input 18 com amplifer output common 19 ap amplifer positive input 20 ifp mixer current output absolute maximum ratings 1 supply voltage v s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 v input voltages rfhi, rflo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 v lohi, lolo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 v internal power dissipation 2 . . . . . . . . . . . . . . . . . . . . 1200 mw operating temperature range ad831a . . . . . . . . . . . . . . . . . . . . . . . . . . . . C40c to +85c storage temperature range . . . . . . . . . . . . . . C65c to +150c lead temperature range (soldering 60 sec) . . . . . . . . . . 300c pin configuration 20-lead plcc ??? ?? ?? ?? ? ??? ?? ??? ?? ?? ?? ? ?? ??? ?? ? ?? ? ?? ??? ??? ???? ??? ?? ?? ? ? ? ?? ? ? ? ? ? ?? ?? ? ?? ?? ?? ?? ?? ?? ?? ???????? ?????????????? ????? caution esd (electrostatic discharge) sensitive device. electrostatic charges as high as 4000 v readily accumulate on the human body and test equipment and can discharge without detection. although the ad831 features proprietary esd protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. therefore, proper esd precautions are recommended to avoid performance degradation or loss of functionality. ordering guide temperature package package model range description option ad831ap C40c to +85c 20-lead plcc p-20a ad831ap-reel7 C40c to +85c 20-lead plcc p-20a ad831ap-eb evaluation board notes 1 stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specifcation is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2 thermal characteristics: 20-lead plcc package: ja = 110c/w; jc = 20c/w. note that the ja = 110c/w value is for the package measured while suspended in still air; mounted on a pc board, the typical value is ja = 90c/w due to the conduction provided by the ad831s package being in contact with the board, which serves as a heat sink. rev. c rev. c
C4 C ad831Ctypical performance characteristics ad831 C5 C 65 64 60 63 62 61 10 1000 100 frequency (mhz ) second order intercept (dbm) tpc 4. second order intercept vs. frequency 90 70 0 50 30 20 10 80 60 40 10 1000 100 frequency (mhz ) isolation (db ) tpc 5. lo-to-rf isolation vs. frequency 80 70 0 40 30 20 10 50 60 10 1000 100 3 x rf C if 2 x rf C if rf C if 3 x rf C if 2 x rf C if rf C if frequency (mhz ) frequency (db ) tpc 6. rf-to-if isolation vs. frequency ?? ?? ? ?? ???? ??? ?? ?? ?? ? ??????????????? ?????????????????????????? ? tpc 1. third order intercept vs. frequency, if held constant at 10.7 mhz 80 70 0 60 50 20 10 40 30 10 1000 100 frequency (mhz ) isolation (db ) tpc 2. if-to-rf isolation vs. frequency 60 50 0 40 30 20 10 10 1000 100 lo frequency (mhz ) isolation (db ) 3 x lo C if 2 x lo C if tpc 3. lo-to-if isolation vs. frequency rev. c rev. c
C4 C ad831Ctypical performance characteristics ad831 C5 C 12 10 0 10 1000 100 8 6 4 2 frequency (mhz ) 1db compression point (dbm) tpc 7. 1 db compression point vs. frequency, gain = 1 12 10 0 10 1000 100 8 6 4 2 frequency (mhz ) 1db compression point (dbm) tpc 8. 1 db compression point vs. rf input, gain = 2 ?? ?? ?? ?? ?? ?? ??? ??? ??? ??? ??? ??? ???????????????????? ? ???? ? ???????????? ??????????? ??????????????????? ? ??????????????? ?????????????????????????? ? tpc 9. third order intercept vs. frequency, lo held constant at 241 mhz 1.00 0.50 C1.00 0.00 C0.25 C0.75 0.75 0.25 C0.50 10 1000 100 frequency (mhz ) third order intercept (dbm) tpc 10. gain error vs. frequency, gain = 1 9 8 0 7 6 5 1 4 3 2 10 1000 100 frequency (mhz ) third order intercept (dbm) tpc 11. 1 db compression point vs. frequency, gain = 4 11 10 7 0 600 100 200 300 400 500 9 8 lo level = C10db m if = 10.7mhz v s = 8v v s = 9v frequency (mhz ) third order intercept (dbm ) tpc 12. input 1 db compression point vs. frequency, gain = 1, 9 v single supply rev. c rev. c
ad831 C6 C ad831 C7 C ?? ?? ?? ? ??? ?? ??? ??? ??? ??? ??? ??? ??? ??? ?? ????????????????? ???????????? ? ????????? ? ? ? ? ????? ? ?????????????? ? ??????????????????????????? ? ? ? ????? tpc 13. input third order intercept, 9 v single supply ???? ???? ???? ? ??? ?? ??? ??? ??? ??? ??? ??? ??? ??? ???? ???? ???? ???? ???? ???? ???? ???? ???? ? ? ??????????????? ?????????????????????????? ? ????????????????? ???????????? ? ????????? ? ? ? ????? ? ? ? ????? tpc 14. input second order intercept, 9 v single supply 1200 1000 0 50 250 100 150 200 800 600 400 200 4.0 3.5 3.0 2.5 2.0 input capacitance input resistanc e input capacitanc e frequency (mhz ) input resistance ( v ) tpc 15. input impedance vs. frequency, z in = r c frequency (mhz ) 18 noise figure (db ) 16 8 50 250 100 150 200 15 13 11 9 17 14 12 10 tpc 16. noise figure vs. frequency, matched input rev. c rev. c
ad831 C6 C ad831 C7 C theory of operation the ad831 consists of a mixer core, a limiting amplifer, a low noise output amplifer, and a bias circuit (figure 1). the mixers rf input is converted into differential currents by a highly linear, class a voltage-to-current converter, formed by transistors q1, q2 and resistors r1, r2. the resulting currents drive the differential pairs q3, q4 and q5, q6. the lo input is through a high gain, low noise limiting amplifer that converts the C10 dbm lo input into a square wave. this square wave drives the differential pairs q3, q4 and q5, q6 and produces a high level output at ifp and ifnconsisting of the sum and differ - ence frequencies of the rf and lo inputsand a series of lower level outputs caused by odd harmonics of the lo frequency mix - ing with the rf input. an on-chip network supplies the bias current to the rf and lo inputs when these are ac-coupled; this network is disabled when the ad831 is dc-coupled. when the integral output amplifer is used, pins ifn and ifp are connected directly to pins afn and afp; the on-chip load resistors convert the output current into a voltage that drives the output amplifer. the ratio of these load resistors to resistors r1, r2 provides nominal unity gain (0 db) from rf-to-if. the expression for the gain, in decibels, is g db = ? ? ? ? ? ? ? ? ? 20 4 1 2 2 10 log p p (1) where: 4 p is the amplitude of the fundamental component of a squarewave. 1 2 is the conversion loss. p 2 is the small signal dc gain of the ad831 when the lo input is driven fully positive or negative. ?? ? ?? ??????? ? ????????? ?? ? ? ?? ?????? ? ?????? ?? ?? ? ?? ? ?? ? ?? ? ???? ???????? ?? ? ?? ?? ??? ?? ? ???????? ?? ? ?? ? ?? ?? ?? ?? ?? ?? ?? ? ?? ?? ? ?? ?? ? ?? ?? ? ?? ?? ? ?? ???? ?? ? ?? ? ?? ? ?? ??? ??? ??? ???????? ???????? ???????? ?? ? ?? ? ??? ?? ? ?? ??? ? ?? ???? ? ????????? ? ???? ? ?? ???? ? ? ?? ?? ? ? ???? ?????? ? ?? rev. c rev. c
ad831 C8 C ad831 C9 C low-pass filtering a simple low-pass flter may be added between the mixer and the output amplifer by shunting the internal resistive loads (an equivalent resistance of about 14 with a tolerance of 20%) with external capacitors; these attenuate the sum component in a downconversion application (figure 4). the corner frequency of this one-pole low-pass flter (f = (2 rc f ) C1 ) should be placed about an octave above the difference frequency if. thus, for a 70 mhz if, a C3 db frequency of 140 mhz might be chosen, using c f = (2 14 140 mhz) C1 82 pf, the nearest standard value. ??? ? ? ??? ?? ?? ? ?? ??? ??? ?? ?? ?? ? ?? ? ?? ??? ???? ?? ?? ? ?? ? ? ? ? ? ? ? ?? ?? ?? ?? ?? ??? ??? ??? ?? ?? ?? ?? ?? ? ? ? ?? ?? ? ? ? ? ? ? ? ? ? ????????? ? ? ?? ? ??? ? ? ????? ? ????? ???????? figure 4. low-pass filtering using external capacitors using the output amplifer the ad831s output amplifer converts the mixer cores differential current output into a single-ended voltage and provides an output as high as 1 v peak into a 50 v load (+10 dbm). for unity gain operation (figure 5), the inputs an and ap connect to the open- collector outputs of the mixers core and out connects to vfb. ?? ????? ? ??? ? ? ??? ?? ?? ? ?? ??? ??? ?? ?? ?? ? ?? ? ?? ??? ???? ?? ? ? ? ? ? ? ?? ?? ?? ?? ?? ??? ??? ??? ?? ?? ?? ?? ?? ? ? ? ?? ?? ????? ???????? ?? ? ?? ? figure 5. output amplifer connected for unity gain operation the mixer has two open-collector outputs (differential currents) at pins ifn and ifp. these currents may be used to provide nominal unity rf to if gain by connecting a center-tapped transformer (1:1 turns ratio) to pins ifn and ifp as shown in figure 2. ?? ? ?? ??????? ? ????????? ?? ???????? ?? ? ??? ???????? ?? ? ?? ? ?? ?? ?? ?? ?? ?? ?? ? ?? ???????? ?? ? ?? ? ?? ? ??? ?? ???? ?? ?? ???? ? ? ?? ?? ? ? ???? ??????? ???????? ? ??? ? ???????? ?? ?? ? ?? ?? ? ?? ?? ? ?? ?? ? ????? ????????? ? ???? ? figure 2. connections for transformer coupling to the if output programming the bias current because the ad831s rf port is a class-a circuit, the maximum rf input is proportional to the bias current. this bias current may be reduced by connecting a resistor from the bias pin to the positive supply (figure 3). for normal operation, the bias pin is left unconnected. for lowest power consumption, the bias pin is connected directly to the positive supply. the range of adjustment is 100 ma for normal operation to 45 ma total current at minimum power consumption. ????? ? ??? ? ? ??? ? ????????? ? ??????? ? ??? ? ? ??? ?? ?? ? ?? ?? ? ??? ?? ?? ?? ? ?? ? ?? ??? ???? ?? ????? ???????? ?? ? ?? ? ? ? ? ? ? ? ?? ?? ?? ?? ?? ??? ??? ??? ?? ?? ?? ?? ?? ? ? ? ?? ?? figure 3. programming the quiescent current rev. c rev. c
ad831 C8 C ad831 C9 C for gains other than unity, the amplifers output at out is connected via an attenuator network to vfb; this determines the overall gain. using resistors r1 and r2 (figure 6), the gain setting expression is g r r r db = + ? ? ? 20 1 2 2 10 log (2) ?? ?? ?? ?????? ??? ? ? ??? ?? ?? ? ?? ?? ? ??? ?? ?? ?? ? ?? ? ?? ??? ???? ?? ?? ? ?? ? ? ? ? ? ? ? ?? ?? ?? ?? ?? ??? ??? ??? ?? ?? ?? ?? ?? ? ? ? ?? ?? ????? ???????? figure 6. output amplifer feedback connections for increasing gain driving filters the output amplifer can be used for driving reverse-terminated loads. when driving an if band-pass flter (bpf), for example, proper attention must be paid to providing the optimal source and load terminations so as to achieve the specifed flter response. the ad831s wideband highly linear output amplifer affords an opportunity to increase the rf to if gain to compensate for a flters insertion and termination losses. figure 7 indicates how the output amplifers low impedance (voltage source) output can drive a doubly terminated band-pass flter. the typical 10 db of loss (4 db of insertion loss and 6 db due to the reverse-termination) be made up by the inclusion of a feedback network that increases the gain of the amplifer by 10 db ( 3.162). when constructing a feedback circuit, the signal path between out and vfb should be as short as possible. ?? ?? ?? ?????? ??? ? ? ??? ?? ?? ? ?? ??? ??? ?? ?? ?? ? ?? ? ?? ??? ???? ?? ? ? ? ? ? ? ?? ?? ?? ?? ?? ??? ??? ??? ?? ?? ?? ?? ?? ? ? ? ?? ?? ? ? ?? ? ? ? ????? ???????? ?? ? ?? ? ???? ? ??? ? figure 7. connections for driving a doubly terminated band-pass filter higher gains can be achieved, using different resistor ratios, but with concomitant reduction in the bandwidth of this amplifer (figure 8 ) . note also that the johnson noise of these gain setting resistors, as well as that of the bpf terminating resistors, is ulti - mately refected back to the mixers input; thus they should be as small as possible, consistent with the permissible loading on the amplifers output. frequency (mhz ) 12 10 0 10 1000 100 1db compression point (dbm) 8 6 4 2 g = 1 g = 2 g = 4 figure 8. output amplifer 1 db compression point for gains of 1, 2, and 4 (gains of 0 db, 6 db, and 12 db, respectively) rev. c rev. c
ad831 C1 0 C ad831 C1 1 C the rf input to the ad831 is shown connected by an impedance matching network for an assumed source impedance of 50 . tpc 15 shows the input impedance of the ad831 plotted vs. frequency. the input circuit can be modeled as a resistance in parallel with a capacitance. the 82 pf capacitors (c f ) connected from ifn and ifp to vp provide a low-pass flter with a cutoff frequency of approximately 140 mhz in down-conversion appli - cations (see the theory of operation section for more details). the lo input is connected single-ended because the limiting amplifer provides a symmetric drive to the mixer. to minimize intermodulation distortion, connect pins out and vfb by the shortest possible path. the connections shown are for unity-gain operation. at lo frequencies less than 100 mhz, the ad831s lo power may be as low as C20 dbm for satisfactory operation. above 100 mhz, the specifed lo power of C10 dbm must be used. ?? ?????? ? ? ??? ? ? ?? ?? ? ??? ? ? ??? ? ? ??? ??? ? ? ??? ?? ? ??? ? ? ?? ? ??? ? ? ?? ?? ?? ?? ???? ? ? ? ???? ? ? ???? ??? ? ? ??? ??? ? ? ??? ?? ??? ?? ?? ? ?? ? ?? ?? ?? ? ?? ? ?? ??? ???? ?? ? ? ? ? ? ? ?? ?? ?? ?? ?? ??? ??? ??? ?? ?? ?? ?? ?? ? ? ? ?? ?? ??????? ? ?????? ? ?? ? ?? ? ???? ? ???? ? ??? ? ????? ???????? figure 9. connections for 5 v dual-supply operation showing impedance matching network and gain of 2 for driving reverse-terminated if filter applications careful component selection, circuit layout, power supply dc coupling, and shielding are needed to minimize the ad831s susceptibility to interference from radio and tv stations, etc. in bench evaluation, we recommend placing all of the components in a shielded box and using feedthrough decoupling networks for the supply voltage. circuit layout and construction are also critical, since stray capaci - tances and lead inductances can form resonant circuits and are a potential source of circuit peaking, oscillation, or both. dual-supply operation figure 9 shows the connections for dual-supply operation. supplies may be as low as 4.5 v but should be no higher than 5.5 v, due to power dissipation. rev. c rev. c
ad831 C1 0 C ad831 C1 1 C single-supply operation figure 10 is similar to the dual-supply circuit in figure 9. supplies may be as low as 9 v but should not be higher than 11 v, due to power dissipation. as in figure 9, both the rf and lo ports are driven single-ended and terminated. in single-supply operation, the com terminal is the ground reference for the output amplifer and must be biased to half the supply voltage, which is done by resistors r1 and r2. the out pin must be ac-coupled to the load. ?? ??? ? ?? ??? ???? ? ??? ??? ? ? ??? ? ? ??? ? ? ??? ? ? ??? ? ? ??? ? ? ??? ? ? ?? ?? ?? ?? ????? ?? ????? ???? ???? ??? ??? ???????? ??????? ?? ???? ? ?? ?? ??? ?? ??? ?? ? ? ? ? ??? ??? ?? ?? ??? ??? ?? ??? ???? ?? ?? ? ?? ? ? ? ? ? ? ? ?? ?? ?? ?? ?? ??? ??? ??? ?? ?? ?? ?? ?? ? ? ? ?? ?? ?? ? ?? ? ????? ???????? figure 10. connections for +9 v single-supply operation rev. c rev. c
ad831 C1 2 C ad831 C1 3 C connections quadrature demodulation two ad831 mixers may have their rf inputs connected in parallel and have their lo inputs driven in phase quadrature (figure 11) to provide demodulated in-phase (i) and quadrature (q) outputs. the mixers inputs may be connected in parallel and a single termination resistor used if the mixers are located in close prox - imity on the pc board. ??????????? ????????? ? ????? ? ?? ?? ? ??? ? ? ??? ? ? ??? ???? ? ??? ? ? ??? ?? ? ??? ? ? ?? ? ??? ? ? ?? ???? ? ? ? ? ? ??? ? ? ??? ??? ? ? ??? ?? ??? ?? ?? ? ?? ? ?? ?? ?? ? ?? ? ?? ?? ? ??? ? ?? ? ? ? ? ? ? ?? ?? ?? ?? ?? ??? ?? ? ?? ? ?? ?? ?? ?? ?? ? ? ? ?? ?? ??????? ? ????? ? ?????? ? ??????????? ???????? ????? ? ?? ?? ? ??? ? ? ??? ? ? ??? ???? ? ??? ? ? ??? ?? ? ??? ? ? ?? ? ??? ? ? ? ? ? ? ??? ? ? ??? ???????? ??? ? ? ??????? ???? ? ??? ? ? ??? ?? ??? ?? ?? ? ?? ? ?? ?? ?? ? ?? ? ?? ??? ???? ?? ? ? ? ? ? ? ?? ?? ?? ?? ?? ??? ?? ? ?? ? ?? ?? ?? ?? ?? ? ? ? ?? ?? ?? ? ?? ? ????? ???????? ?? ? ?? ? ????? ???????? figure 11. connections for quadrature demodulation rev. c rev. c
ad831 C1 2 C ad831 C1 3 C table i. ad831 mixer table, 4.5 v supplies, lo = C9 dbm lo level C9.0 dbm, lo frequency 130.7 mhz, data file imdtb10771 rf level 0.0 dbm, rf frequency 120 mhz temperature ambient dut supply 4.50 v vpos current 90 ma vneg current 91 ma intermodulation table rf harmonics (rows) lo harmonics (columns). first row absolute value of nrf C mlo, and second row is the sum. 0 1 2 3 4 5 6 7 0 C32.7 C35.7 C21.1 C11.6 C19.2 C35.1 C41.9 C32.7 C35.7 C21.1 C11.6 C19.2 C35.1 C41.9 1 C31.6 0.0 C37.2 C41.5 C30.4 C34.3 C25.2 C40.1 C31.6 C28.5 C26.7 C28.0 C27.2 C33.2 C34.3 C44.8 2 C45.3 C48.2 C39.4 C57.6 C44.9 C42.4 C40.2 C40.2 C45.3 C42.4 C49.4 C42.5 C51.1 C46.2 C58.1 C61.6 3 C54.5 C57.1 C57.5 C50.6 C62.6 C55.8 C59.7 C55.2 C54.5 C65.5 C46.0 C63.7 C60.6 C69.6 C72.7 C73.5 4 C67.1 C63.1 C69.9 C69.9 C69.6 C74.1 C69.7 C58.6 C67.1 C53.6 C72.9 C71.2 C70.1 C72.6 C73.5 C72.7 5 C53.5 C62.6 C73.8 C72.3 C70.7 C71.1 C74.3 C73.0 C53.5 C68.4 C70.8 C72.8 C73.4 C73.2 C73.3 C72.5 6 C73.6 C57.7 C68.6 C73.1 C73.8 C73.0 C72.9 C74.4 C73.6 C73.5 C72.7 C73.5 C73.6 C73.1 C72.4 C73.7 7 C73.8 C73.9 C63.4 C72.6 C74.6 C74.9 C73.6 C74.5 C73.8 C73.8 C73.2 C73.8 C72.6 C73.7 C73.5 C72.9 table ii. ad831 mixer table, 5 v supplies, lo = C9 dbm lo level C9.0 dbm, lo frequency 130.7 mhz, data file imdtb13882 rf level 0.0 dbm, rf frequency 120 mhz temperature ambient dut supply 5.00 v vpos current 102 ma vneg current 102 ma intermodulation table rf harmonics (rows) lo harmonics (columns). first row absolute value of nrf C mlo, and second row is the sum. 0 1 2 3 4 5 6 7 0 C36.5 C46.5 C33.0 C17.0 C23.0 C34.2 C45.6 C36.5 C46.5 C33.0 C17.0 C23.0 C34.2 C45.6 1 C37.5 0.0 C41.2 C41.1 C38.5 C29.0 C31.7 C47.4 C37.5 C29.1 C38.7 C22.9 C28.4 C35.3 C34.3 C52.4 2 C45.9 C45.2 C47.6 C61.5 C53.7 C43.5 C41.5 C41.8 C45.9 C39.4 C35.7 C38.4 C42.3 C53.7 C52.8 C66.3 3 C46.4 C53.0 C67.0 C43.0 C60.9 C47.9 C50.7 C41.0 C46.4 C40.0 C50.0 C48.9 C57.8 C57.0 C71.8 C67.4 4 C45.1 C56.0 C48.7 C64.6 C53.5 C55.7 C53.5 C51.1 C45.1 C39.0 C48.1 C58.4 C56.1 C63.8 C70.5 C67.6 5 C35.2 C45.3 C54.1 C54.1 C53.7 C57.9 C66.6 C64.3 C35.2 C53.0 C62.4 C67.3 C67.0 C69.4 C73.2 C72.9 6 C63.4 C41.1 C53.6 C66.5 C58.8 C63.3 C61.7 C71.4 C63.4 C66.3 C67.2 C67.5 C72.9 C71.2 C71.7 C73.2 7 C67.3 C65.8 C37.8 C54.6 C62.5 C71.7 C55.2 C57.1 C67.3 C61.6 C66.3 C72.9 C71.4 C70.7 C72.1 C73.1 rev. c rev. c
ad831 C1 4 C ad831 C1 5 C table iii. ad831 mixer table, 3.5 v supplies, lo = C20 dbm lo level C20.0 dbm, lo frequency 130.7 mhz, data file g1t1k 0771 rf level 0.0 dbm, rf frequency 120 mhz temperature ambient dut supply 3.50 v vpos current 55 ma vneg current 57 ma intermodulation table rf harmonics (rows) lo harmonics (columns). first row absolute value of nrf C mlo, and second row is the sum. 0 1 2 3 4 5 6 7 0 C45.2 C35.7 C16.1 C21.6 C22.3 C32.0 C36.4 C45.2 C35.7 C16.1 C21.6 C22.3 C32.0 C36.4 1 C30.3 0.0 C33.7 C47.9 C37.5 C33.8 C32.0 C45.2 C30.3 C29.7 C28.2 C24.4 C26.0 C47.4 C35.9 C49.7 2 C50.3 C49.4 C47.4 C49.9 C48.8 C38.5 C40.7 C51. C50.3 C41.0 C51.4 C34.7 C49.8 C48.6 C68.5 C67.9 3 C48.4 C55.7 C58.2 C45.0 C57.0 C68.4 C55.5 C47.7 C48.4 C52.9 C50.0 C64.5 C62.8 C73.4 C74.0 C71.8 4 C66.7 C59.7 C67.2 C62.8 C58.2 C71.5 C72.9 C63.5 C66.7 C65.9 C78.1 C74.2 C77.5 C74.4 C77.9 C77.5 5 C66.9 C71.5 C73.6 C77.6 C70.8 C70.2 C75.8 C78.1 C66.9 C76.3 C78.1 C78.2 C78.1 C78.0 C77.9 C77.9 6 C78.0 C69.7 C76.7 C78.6 C78.8 C75.4 C78.1 C79.0 C78.0 C78.3 C78.3 C78.2 C78.1 C78.0 C77.9 C77.8 7 C78.4 C78.5 C76.9 C78.7 C79.0 C79.1 C78.6 C78.9 C78.4 C78.3 C78.2 C78.2 C77.9 C77.9 C77.8 C77.5 table iv. ad831 mixer table, 5 v supplies, 1 k bias resistor, lo = C20 dbm lo level C20.0 dbm, lo frequency 130.7 mhz, data file g1t1k 3881 rf level 0.0 dbm, rf frequency 120 mhz temperature ambient dut supply 3.50 v vpos current 59 ma vneg current 61 ma intermodulation table rf harmonics (rows) lo harmonics (columns). first row absolute value of nrf C mlo, and second row is the sum. 0 1 2 3 4 5 6 7 0 C60.6 C52.3 C16.6 C12.8 C26.0 C45.0 C38.8 C60.6 C52.3 C16.6 C12.8 C26.0 C45.0 C38.8 1 C34.1 0.0 C35.2 C41.8 C29.8 C29.1 C35.3 C49.0 C34.1 C27.3 C28.7 C20.7 C32.9 C39.2 C38.2 C47.8 2 C46.6 C48.8 C40.1 C52.2 C57.9 C38.6 C45.8 C47.7 C46.6 C37.8 C47.6 C41.7 C54.2 C50.4 C64.1 C64.9 3 C41.3 C58.8 C59.5 C41.8 C61.2 C58.1 C57.5 C54.0 C41.3 C47.9 C65.2 C62.5 C64.2 C73.8 C72.3 C72.6 4 C53.9 C52.5 C73.7 C68.1 C60.3 C71.0 C63.4 C62.3 C53.9 C61.4 C70.6 C76.9 C76.8 C78.6 C78.3 C78.1 5 C66.9 C65.8 C76.6 C75.2 C65.4 C70.0 C73.6 C68.7 C66.9 C69.7 C72.9 C77.4 C77.7 C78.5 C78.4 C78.2 6 C77.4 C73.3 C73.8 C78.8 C79.2 C73.6 C74.9 C79.3 C77.4 C78.6 C78.7 C78.6 C78.6 C78.4 C78.2 C78.2 7 C78.9 C79.0 C77.9 C78.0 C79.3 C79.5 C79.3 C79.3 C78.9 C78.8 C78.7 C78.6 C78.3 C78.3 C78.1 C78.0 rev. c rev. c
ad831 C1 4 C ad831 C1 5 C ??? ??? ?? ? ??????? ? ???????? ?? ?? ? ????? ??????????? ? ???????? ???????????? ???????????? ???????? ???????????? ???????????? ??????? ??????????????? ??????? ?????????? ??????????? ??????????? ??????????????? ? ???????? ???????? ???????? ???????????? ???????? ??????????? ???????????????? ???????? ??????????? ???????????????? figure 12. third order intercept characterization setup ??? ??? ?? ????? ??????????? ? ???????? ??????????? ???????????????? ???????? ??????????? ???????????????? ?? ?? ?? ? ?? ? ?? ? ?? ? ???????? ???????????? ???????????? ???????? ???????????? ???????????? ???????? ???????????? ???????? ????????????? ??????????????? ???????????? ?? ? ??????? ? ?? ? ??????? ? ???????? ??????????? ???????????????? ???????? ???????? ???????? figure 13. if-to-rf isolation characterization setup rev. c rev. c
c00882C0C6/03(c) C1 6 C ad831 revision history location page 6/03Cdata sheet changed from rev. b to rev. c. updated format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . universal changes to figure 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 updated outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 outline dimensions 20-lead plastic leaded chip carrier [plcc] (p-20a) dimensions shown in inches and (millimeters) 0.020 (0.50) r botto m view (pins up ) 0.040 (1.01) 0.025 (0.64) 0.021 (0.53) 0.013 (0.33) 0.330 (8.38) 0.290 (7.37) 0.032 (0.81) 0.026 (0.66) 0.056 (1.42) 0.042 (1.07) 0.20 (0.51) mi n 0.120 (3.04) 0.090 (2.29) 3 4 19 18 8 9 14 13 top view (pins down ) 0.395 (10.02) 0.385 (9.78) sq 0.356 (9.04) 0.350 (8.89) sq 0.048 (1.21) 0.042 (1.07) 0.048 (1.21) 0.042 (1.07) 0.020 ( 0.50) r 0.050 (1.27) bs c 0.180 (4.57) 0.165 (4.19) compliant to jedec standards mo-047aa controlling dimensions are in inches; millimeter dimensions (in parentheses) are rounded-off inch equivalents fo r reference only and are not appropriate for use in design rev. c


▲Up To Search▲   

 
Price & Availability of AD831APZ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X